
Programming an SSD Controller to Support
Batched Writes for Variable-Size Pages
Jaeyoung Do

Microsoft Research
Redmond, WA, USA
jaedo@microsoft.com

Chen Luo*

University of California, Irvine
Irvine, CA, USA

cluo8@uci.edu

David Lomet#
Microsoft Research

Redmond, WA, USA
lomet@microsoft.com

Abstract—Exploiting a storage hierarchy is critical to cost-
effective data management. However, most systems are challenged
when data is not in cache because of the additional I/O to move
data between SSD and main memory. To improve both cost and
performance, some systems use a log structured store to write
a batch of pages instead of a “block-at-a-time”. However, host-
based log structuring incurs the additional cost and complexity
of garbage collection and recovery, duplicating similar SSD FTL
functionality. In prior work, we presented a customized SSD
controller implementation for an Open-Channel SSD to enable
host computers to write batches of fixed size pages. This current
work is a major redesign to support a batched write interface
with variable size pages. Variable size pages can enable easy
support of data compression and encryption, as well as reducing
internal page storage fragmentation, e.g, within a B-tree. Thus
it further improves I/O performance while making it easier and
more efficient to support these capabilities.

I. INTRODUCTION

A. Improving Cost/Performance

I/O operations per second (IOPS) can be a limiting factor in
systems performance. SSDs have improved dramatically in the
IOPS that they can support. Nonetheless, each I/O operation
produces an execution burden on the host system. A traditional
block-at-a-time (BAAT) SSD interface incurs the host I/O
execution path cost for each block (page) written. An SSD
that supports a batch (of pages) at a time interface incurs that
I/O execution path cost for each batch, hence amortising the
execution cost over many pages.

Log structured stores [10], [11] do batching using a con-
ventional BAAT interface. Log structuring never updates in
place. Hence, it incurs additional costs to enable batching. (1)
The latest location where the page has been written must be
durable across system crashes. (2) Old versions of pages need
to be garbage collected to avoid their filling up the SSD. While
log structuring has a positive cost and performance advantage
versus simple BAAT approaches, some of this advantage is
given back to deal with durability and garbage collection (GC).
And log structuring adds to host implementation complexity.

Modern SSDs also implement log structuring to support a
flash translation layer (FTL) in their controllers. The FTL has
the same durability and GC requirements as a log structured

* Work performed during internship at Microsoft Research.
Retired from Microsoft Research in October, 2020.

store. Hence, host-based log structuring overlaps with the func-
tionality of modern SSD controllers and consumes CPU and
I/O resources for this duplicate functionality. It is highly desir-
able to eliminate this duplication by removing log structuring
from the host with the SSD controller providing batch at a time
capability. This eliminates CPU GC and durability overhead
since these functions can now be performed completely in the
SSD controller.

Our purpose is to improve the cost/performance of the
data management layer by using the re-programmed SSD to
reduce I/O costs. While our in-house data management system
is the Bw-tree key-value store [9] with its log structured
store [10], supporting a batch I/O interface by pushing log
structuring into the SSD controller enables many disk-based
data management systems (data caching systems [4]) to im-
prove their cost/performance. This can be seen in Figure 1
where executing an operation on in-memory data is plotted
versus executing an operation on data that resides on an SSD.
SSD storage cost is lower, while operating cost is higer due
to the cost of I/O needed to bring the data into main memory.
Figure 1 shows how lowering the cost of I/O can lower cost
over a large part of the performance range.

B. Variable Size Pages

We previously implemented an SSD controller supporting a
batched write interface with fixed size pages [8]. The current
paper describes ELEOS, an SSD controller implementation
that supports a batched write interface with variable size pages.
Compared with our prior fixed size page implementation,
supporting variable size pages required a major re-design of
garbage collection, provisioning, and page management across
the I/O interface. In addition, we substantially improved the
performance of checkpoint and recovery.

Why are variable size pages potentially important? Internal
fragmentation (unused storage resulting from mapping variable
length data to fixed size containers) can be reduced using
variable size pages. For example, B-tree pages generated in
the usual way, have about 70% storage utilization. When a full
page splits, the data is divided into two pages, each about half
full, then the process repeats. Variable size pages can squeeze
out that internal fragmentation and reclaim the storage. The
Bw-tree [9] supports variable size pages, enabling its pages
to approach 100% storage utilization. Storing variable length

Main

Memory

Flash

Storage

R
el

at
iv

e
C

o
st

Per Byte

Low

High

Main

Memory

Flash

Storage

R
el

at
iv

e
C

o
st

Flash Op I/O Path Execution

Low

High

Relative Storage Costs Relative Operating Costs

R
el

at
iv

e
C

o
st

Cost/Performance: Key-Value Store

Low

High

Performance: Ops/sec
No operations High

performance

Storage Costs

Main Memory Op

Flash Storage Op

Data Caching Op

Lower Flash Storage Op

Data Caching System can

follow the lower cost curve:

either Main Memory Op or

Flash Storage Op

Speculative

lower I/O cost

Lower cost over huge performance range!

(a) (b) (c)

Fig. 1: (a) flash storage cost is lower, but (b) execution cost is higher for reading the data into main memory. (c) Cost
vs performance for key-value store operations, showing cost when data is in main memory and when it comes from
an SSD. The dotted light blue line shows how costs are reduced if I/O cost can be reduced.

blobs is another case where having variable size pages reduces
the internal fragmentation that results from mapping data to
fixed size pages.

Even when starting with fixed size data, desired operations
on it can produce variable length results. Both encryption
and compression usually change the length of the data in-
volved. Thus, we expect compressed data to be shorter than
the original starting data. Similarly, data encryption usually
increases the length of the data. While current systems work
around this change in data length, there is usually a system
complexity cost to be paid, and sometimes an added execution
cost as well. Direct support for variable size pages is a major
simplification for a data management system when dealing
with these functionalities.

C. This Paper and Our Contributions

The rest of the paper is organized as follows. Section II
provides necessary background for this work. Section III
presents an architectural overview of ELEOS. This architecture
and its semantics is one of our contributions. Sections IV and
V describe how writes and reads are supported in ELEOS
respectively. Our write path implementation needs to handle
variable size pages, which poses a new set of problems. This
is our second contribution. Section VI describes the garbage
collection in ELEOS with a novel GC algorithm. The GC
algorithm, described elsewhere, is a major advance in log
structured GC. Section VII describes how write failures are
handled in ELEOS. Dealing with these failures is a challenging
part of getting an FTL “right”. Section VIII discusses the
recovery techniques used in ELEOS. Recovery presents a num-
ber of unique challenges and constitutes our third contribution.
Section IX presents the experimental evaluation of ELEOS.
This evaluation is our fourth contribution and demonstrates
the value of our batch interface approach. Finally, Section X
concludes the paper.

II. BACKGROUND

A. Log Structuring

Log structuring [11] was originally proposed to minimize
random I/O overhead on hard disks. Unlike update-in-place
systems that incur many random I/Os to overwrite pages, a
log structured system always appends newly written pages
using sequential I/Os to write large buffers of pages. This
design maximizes system write throughput by exploiting large
sequential I/Os, but has two important implications.
• The system must maintain a persistent mapping table that

stores the latest location for each page. The mapping table
must be durably updated for each write.

• Garbage collection must be performed to reclaim storage
space occupied by obsolete versions of pages. Otherwise,
the system will soon run out of space.
The performance penalty of random I/Os have been largely

eliminated from modern SSDs, though not the cost of execut-
ing the write code path. However, due to the special erase-
before-write semantics, SSDs, in their controllers, usually
implement log structuring to manage the internal storage
media, as discussed above.

B. Solid State Drives (SSDs)

An SSD contains two main components [12], namely the
flash storage media and the controller. The storage media is
a persistent array of multiple flash channels. A flash channel
provides communication between the SSD controller and a
subset of flash chips, and a chip consists of multiple blocks,
each of which holds multiple pages. A major characteristic of
flash is that it must be erased before data is written and can
endure only a limited number of erases before it can no longer
be used. The unit of erasure is what we refer to as an erase
block (EBLOCK), while a read is to a read page (RBLOCK),
and a write to a write page (WBLOCK) (see Table I). Higher
I/O performance from the flash storage media requires writes
in parallel to channels and chip level interleaving techniques.

Block-at-a-time Interface

Host: Data Caching System (DCS)

Mapping
LPID → Mem Addr / SSD LBA

Garbage

Collection

Recovery /

Checkpoint

Block I/O Layer

Block I/O Parser

Mapping
SSD LBA → Flash PBA

Garbage

Collection

Recovery /

Checkpoint

Proprietary Controller

Flash Storage Media

Generic FTL

Flash

Flash

C
h
an

n
el Flash

Flash

C
h
an

n
el Flash

Flash

C
h
an

n
el

Conventional SSD

Batch-at-a-time Interface

Host: Data Caching System (DCS)

Mapping
LPID → Mem Addr / SSD LBA

Batch I/O Layer

Batch I/O Parser

Mapping
LPID→ Flash PBA

Garbage

Collection

Recovery /

Checkpoint

Programmable Controller

Open-Channel SSD

DCS-aware FTL

Flash

Flash

C
h
an

n
el Flash

Flash

C
h
an

n
el Flash

Flash

C
h
an

n
el

Programmable SSD

Host does not consume

bandwidth or IOPS for

Recovery and GC

Free up Host to execute

more user workload

Programmable SSD

with an application-

specific FTL

Fig. 2: Left: host-based log structuring built using a conventional SSD. Right: host using an LS engineered controller
that allows a batch interface.

Term Example Size Description

RBLOCK 4KB Smallest readable storage unit
WBLOCK 32KB Smallest writable storage unit
EBLOCK 8MB Smallest erasable storage unit
TAG 16B/RBLOCK Controller accessible metadata

TABLE I: Flash memory terms

The SSD controller is commonly implemented as a system-
on-a-chip for cost-effective management of the underlying
storage media. To deal with the erase-before-write semantics
of NAND flash, the controller implements a form of log struc-
turing [11] that supports an FTL mapping logical addresses
to physical flash addresses. As in all log structured systems,
garbage collection is required to reclaim obsolete pages in
flash EBLOCKs.

The SSD controller “firmware” has previously been pro-
prietary with only a block I/O interface exposed to users.
However, this leads to suboptimal storage utilization and
performance. If we are to overcome this problem, SSD’s
internal media geometry and parallelism must be exposed so
that it becomes possible to control data placement and I/O
scheduling in a better way, dependent on user requirements.
The industry is undertaking two directions to address this,
(1) building customized SSD controllers via programmable
SSDs [3], [6], [7], [15] or (2) moving FTL functionalities to
the host via Open-Channel SSDs (OCSSD) [13], [14].

III. SYSTEM ARCHITECTURE

ELEOS is implemented on top of OX [1], a program-
ming framework for building programmable SSD controllers.
ELEOS builds a customized FTL to support batched writes
and variable size pages. Fig. 2 compares the architecture of
a traditional SSD and that of our SSD controller. As one can
see, ELEOS now provides a batched I/O interface for better
performance. Moreover, it also eliminates the log-structuring
overheads, i.e., garbage collection and recovery, from the host.

A. I/O Interface Semantics

Unlike conventional SSDs, which support a BAAT interface,
ELEOS supports a batched write interface to amortize the I/O
cost associated with each write over a larger number of pages.
This allows applications to write many logical pages (LPAGE)
using a single I/O, each LPAGE being uniquely identified via
a logical page ID (LPID). The system described in this paper
further, and unlike traditional SSDs where the page size is
fixed, allows LPAGEs to have variable sizes. LPAGEs are
aligned with 64 bytes to reduce the overhead for storing the
LPAGE length. Thus, the smallest LPAGE size is also 64 bytes.

1) Write Buffer Semantics: Conventional SSDs with a
BAAT interface only provide operational semantics, e.g.,
atomicity and durability, at the LPAGE level. Given that
reading and writing a batch of LPAGEs differs from a block
interface, the semantics provided by ELEOS is crucial. ELEOS
guarantees atomicity and durability of write buffers. For
atomicity, ELEOS ensures that either all LPAGES in a write
buffer are persisted or none of them are. Durability ensures
that committed write buffers are durable even after system
crashes. ELEOS further ensures that pages within write buffers
are posted to the SSD state in a serial order matching the order
in which an application posted them to the write buffer. This
is important because newer LPAGEs (submitted to the buffer
later) are required to overwrite older ones for an application
to see the same effect regardless of buffer size. However,
ELEOS does not protect against subsequent data corruption
in the storage media. Data corruption must be handled by
applications, e.g., via replication.

Applications can read LPAGEs by simply specifying LPIDs.
If a read is submitted after a write buffer has been acknowl-
edged, ELEOS guarantees the read sees a state that is a prefix
of a time ordered history that includes all the LPAGES of the
write buffer. However, if a read is submitted concurrently with
a write buffer, ELEOS guarantees only that the read sees a state
that is a prefix of a time ordered history that includes a prefix

of the LPAGES in the write buffer, not a history that includes
all pages in the entire buffer. We introduce a system action to
describe our unit of atomicity. A system action ensures that the
updates to logical pages in a buffer are either stored completely
and become visible in the mapping table in the same order
in which they occur within a buffer or are never visible in
the mapping table. Applications have to perform additional
concurrency control if stronger guarantees are desired.

2) Ordering Among Multiple Write Buffers: We define the
order in which updates to pages occur when multiple updates
for the same page are in a single write buffer. We need also
to order updates sent in different write buffers, using different
write I/O commands. Currently, SSDs do not provide an order
guarantee if a second write is issued prior to a first write being
acknowledged. Order can be enforced by waiting for a write
to be acknowledged prior to issuing the next write. But, SSDs
support parallel updates to flash storage and the performance
benefit that it produces. Waiting for an ACK wastes parallelism
and reduces write throughput/bandwidth. We want to avoid this
limitation.

Our write protocol requires a user to open and close a
session with the SSD, using a session ID (SID). SIDs are
random numbers assigned by the SSD. Within a session, a
user gives each write buffer a write sequence number (WSN).
Each write requires an < SSID,WSN > pair. WSNs start
at 1 with each subsequent WSN one larger than the prior
WSN. ELEOS applies the updates to SSD pages in WSN order
within a session, and will not apply updates of a write until
the updates of all prior writes with lower WSNs have been
applied. The SSD will ACK writes in this same order. Users
without ordering requirements can ignore sessions.

User sessions must survive controller crashes, requiring that
the state of open sessions be durable. If a host system user,
perhaps due to a controller crash, does not receive an ACK
for a write, it can redo unACK’d writes. A write received at
the controller having a WSN that is not one higher than the
controller’s remembered highest WSN is not applied, and the
highest WSN is ACK’d to the host system. See section VIII
for more about durability.

B. FTL Components

ELEOS implements a customized FTL to support batching
and variable size pages. It uses a mapping table to store
the latest physical address of each LPID and an EBLOCK
summary table to manage the states of all EBLOCKs. All mod-
ifications to these two tables are made durable via logging and
checkpointing. When a channel’s storage utilization exceeds
a “fill” threshold, garbage collection is triggered to reclaim
storage space from a set of candidate EBLOCKs. Below we
discuss the two system tables, i.e., the EBLOCK summary
table and mapping table, in detail.

Each EBLOCK has an associated descriptor in the
EBLOCK summary table. An EBLOCK descriptor contains
the EBLOCK state (such as FREE if the EBLOCK is empty,
USED if full, and OPEN if partially written), the erase count,
the number of WBLOCKs containing data and the number

of WBLOCKs containing metadata describing the data, the
amount of available space (AVAIL), and a timestamp (TS).

The total size of an EBLOCK’s descriptor is less than
32 bytes. For an 1TB SSD with EBLOCKs of size 8MB,
for example, the EBLOCK summary table is smaller than
4MB, which can be easily cached in memory. However, the
EBLOCK summary table is too large to be conveniently
stored in the checkpoint record. To address this problem, the
EBLOCK summary table is paginated and a small table that
stores the latest location of each EBLOCK summary table
page is introduced. This small table is less than 1KB, and can
easily be stored in the checkpoint record.

The mapping table contains the latest physical flash address
where the current LPAGE state (i.e., data) of an LPID is stored
and the length of that data. Each physical address uses 8
bytes and stores the channel id, EBLOCK id, WBLOCK id,
RBLOCK id, start offset and length of an LPAGE. We assume
each LPAGE is stored continuously within a single EBLOCK,
and the entire LPAGE can be retrieved by reading from the
physical address stored in the mapping table.

The mapping table is usually too large to be totally cached
in memory. For example, for an 1TB SSD with an average
LPAGE size of 4KB, the entire mapping table occupies 2GB.
To address this problem, we introduce two additional mapping
table levels, namely a small table and a tiny table, on top
of the mapping table and forming an index to it. The small
table stores the physical addresses of mapping table pages and
usually is a few megabytes. The small table is small enough to
be cached, but it is still too large to be stored in the checkpoint
record. Thus, an additional tiny table, which indexes the pages
of small table pages, is introduced and it is completely stored
in the checkpoint record.

IV. WRITE PATH

We describe here how writes are processed in ELEOS.
After a write buffer is received, ELEOS processes the pages
of the write buffer completely with a system action. The
system action has three phases, i.e., initialization, execution,
and commit. During the initialization phase, a system action
for the write buffer decides where the pages of the buffer are
to be stored (called provisioning). These physical addresses
on the storage media are used to generate I/O commands. Log
records for the for the pages in the write buffer are generated to
ensure that, should the controller crash, the controller state is
either atomically updated or reset to the state prior to the write.
During the execution phase, the I/O commands for LPAGEs
and their log records are executed in parallel, transferring
their data to the storage media. When execution is completed,
the system action enters the commit phase by first forcing
a commit log record, i.e., it issues the I/O for the commit
log record and waits for the OCSSD to acknowledge that
the commit record is durable. After the commit log record is
durable, the system action is committed and the new physical
addresses for the LPAGES are installed into the mapping table.

free EBlocks

used EBlocks

open EBlocks

...

...

user writes

GC writes
data metadata

log writes

Fig. 3: Channel provisioning example: EBLOCKs are
marked as open if they are partially written, free if they
are empty, and used if they are full.

A. Initialization Phase

During the initialization phase, a system action is generated
for the write buffer with three major tasks, i.e., write provi-
sioning, generating I/O commands, and producing log records.

1) Write Provisioning: Write provisioning allocates phys-
ical addresses for LPAGEs that are in a write buffer. Since
the storage media contains multiple channels, it is desirable
to distribute user writes across all channels as evenly as
possible to maximize I/O parallelism. Write provisioning is
hence performed at two tiers, global provisioning and channel
provisioning. Global provisioning partitions the write buffer
into multiple chunks of approximately equal sizes so that
each channel can receive roughly the same amount of data
to write. Partitioning must respect the LPAGE boundaries
to ensure that each LPAGE is written to contiguous storage
in a single channel. After partitioning, channel provisioning
allocates physical addresses to LPAGEs.

As shown in Fig. 3, each channel maintains the lists of
used and free EBLOCKs. We maintain one open EBLOCK
for each type of write, (1) log write, (2) new LPAGE write,
or (3) garbage collection write. Log writes are separated from
user writes because they use different GC mechanisms. GC
writes are also separated from user writes so as to separate
cold data moved by GC from hot data in the new user writes.

An EBLOCK stores both data, e.g., LPAGEs, and metadata.
The metadata of an EBLOCK contains the type and LPID
for each LPAGE, and is mainly used for GC (Section VI).
When an open EBLOCK becomes full, its metadata is flushed
to the last pages of the EBLOCK. Log records are written
using this same metadata to enable the mapping table to be
correctly updated should the system crash. After the metadata
is successfully persisted, the EBLOCK is then closed and
enters the used state. When an EBLOCK for user writes is
closed, its timestamp is set as the current time, which is the
update sequence number1 of the last page being written.

Write provisioning is performed at the WBLOCK granular-
ity. To provision physical addresses for a batch of LPAGEs,
we increment the current data WBLOCK position in the
EBLOCK and populate the physical address of each LPAGE.
The LPIDs and types are added to the EBLOCK metadata.
During the provisioning process, an EBLOCK may not have
sufficient storage to fully contain the LPAGES. In this case,

1We use update sequence numbers as our proxy for time.

the EBLOCK is closed by flushing its metadata to the last
unused pages of the EBLOCK. The EBLOCK only flushes its
metadata after all data WBLOCKs have been persisted so that
the metadata occurs in the highest order pages of the EBLOCK
and describes all data pages of the EBLOCK. During recovery,
this allows us to safely conclude an EBLOCK has been
successfully closed after checking that its metadata has been
persisted. During garbage collection, only the metadata pages
need to be read to decide which data pages remain valid and
hence moved elsewhere.

Thus, instead of closing an EBLOCK immediately during
provisioning, we let the system action that causes an EBLOCK
to be full submit an I/O command to flush the EBLOCK’s
metadata after submitting all I/O commands to write data
WBLOCKs. After an open EBLOCK is full, a new EBLOCK
is taken from the free EBLOCK list. When the number of free
EBLOCKs is low, e.g., lower than 10%, the channel will be
marked for GC to reclaim space from used EBLOCKs.

Since provisioning is done at the WBLOCK level, and
LPAGEs are variable length, there may be some storage
fragmentation in WBLOCKs. First, for a chunk of LPAGEs
allocated to each channel, the last WBLOCK can be frag-
mented if the LPAGEs cannot completely fill it. Second, if an
EBLOCK does not have enough space to store the next LPAGE
during provisioning, the remaining space will be fragmented.
The storage space lost by fragmentation will be added to
AVAIL of the EBLOCK in the EBLOCK summary table.
Given that an EBLOCK is very large (MBs), the fraction of
space lost to fragmentation is usually very small.

2) I/O Command Generation: After provisioning physical
addresses for LPAGEs, we then generate I/O commands to
write in-memory LPAGEs to the OCSSD. Each I/O command
writes a contiguous chunk of memory to a single WBLOCK.
With provisioned physical addresses, the generation of I/O
commands is straightforward: we can generate I/O commands
for each provisioned WBLOCK based on the offset of the first
LPAGE in this EBLOCK.

Consider the example write buffer in Fig. 4, where each
WBLOCK is 16KB. Suppose LPAGEs 1 to 3 are provisioned
to the first 3 WBLOCKs in EBLOCK 1, and LPAGEs 4 to
6 are provisioned to the first 2 WBLOCKs in EBLOCK 2.
Then five I/O commands are generated to write these LPAGEs,
one for each WBLOCK. For example, the I/O command for
WBLOCK 1 of EBLOCK 1 copies the first 16KB of the
write buffer, while the I/O command for WBLOCK 1 of the
EBLOCK 2 copies 37KB, based on the offset of LPAGE 4,
to 53KB of the write buffer. Note that the last provisioned
WBLOCK at each EBLOCK may copy some additional mem-
ory that is not provisioned to that EBLOCK, e.g., WBLOCK 3
of EBLOCK 1. This is simply treated as internal fragmentation
of these WBLOCKs with the fragmentation size added to
AVAIL for the EBLOCK.

3) Logging: Along with generating I/O commands, log
records are produced for the write buffer as well to ensure
the durability of changes produced by committed system
actions. The log records only contain the redo information

LPAGE 1
11KB

LPAGE 2
14KB

LPAGE 3
12KB

LPAGE 4
10KB

LPAGE 5
8KB

LPAGE 6
9KB

11 25 37 47 55 64

EBlock 1 EBlock 2

WBlock 1
16KB

WBlock 2
16KB

WBlock 3
16KB

WBlock 1
16KB

WBlock 2
16KB

......

16 32 48 53 68

write buffer

Fig. 4: I/O command generation example

of the changes made to the mapping table and EBLOCK
summary table. No undo information needs to be logged
because ELEOS follows a no-steal policy [16]. Specifically,
each LPAGE written results in a log record to store its LPID
and new physical address. We will further discuss how the
changes to the mapping table and EBLOCK summary table
are redone during recovery in Section VIII.

B. Execution Phase

After the system action is created for a write buffer, the I/O
commands are executed at all channels in parallel. Specifically,
we use one submission queue for each channel to execute I/O
commands in order. Within each EBLOCK, I/O commands are
always executed in submission order.

We use one byte per I/O command to keep track of the status
of each I/O command. When the I/O command completes,
either having succeeded or failed, the system action is notified
to update its status. If any I/O command fails, the system
action is aborted and the user must retry writing the buffer.

C. Commit Phase

A system action is aborted or committed based on whether
all I/O commands are successfully completed. Aborting a
system action is straightforward. We simply treat the provi-
sioned physical addresses for this system action as garbage by
incrementing AVAILs of provisioned EBLOCKs. The wasted
space will be eventually reclaimed by garbage collection.

Recall that we ensure system actions are committed within
a session in WSN order. When a system action is about to
commit, i.e., the system actions associated with all lower
WSNs have committed, a commit log record is forced that
contains the current WSN. After the commit log record is
durable, the system action can then install the new physical
addresses for LPAGEs into the mapping table. The space
occupied by the over-written versions of LPAGES is added to
AVAIL of the containing EBLOCKs in the EBLOCK summary
table. The space occupied by these obsolete LPAGES will
eventually be reclaimed by GC.

V. READ PATH

To read an LPAGE, the user specifies an LPID. After
receiving the read request, ELEOS accesses the mapping table
to get the physical address of the LPAGE. Recall that the
physical address contains the start address and the length of
an LPAGE. Based on the physical address, ELEOS generates
multiple I/O commands to transfer the LPAGE from the
storage media to memory. Since SSD reads are performed in
the RBLOCK level, which, in general, is not aligned with

LPAGE 1 WBlock1

RBlock 1 RBlock 2 RBlock 3 RBlock 4

SSD reads

LPAGE 1 buffer

send to host

Fig. 5: An example of reading a variable size LPAGE

LPAGE, some extra data may be transferred to memory as
well. Finally, based on the start offset of the LPAGE in the first
RBLOCK and its length, ELEOS transfers the exact content
of the LPAGE back to the host.

Consider the example in Fig. 5. Suppose LPAGE 1 is
stored in RBLOCKs 1 through 3. To read this LPAGE, these
RBLOCKs are first transfered to memory. Then based on
the start offset and length stored in the physical address of
LPAGE1 in the mapping table, only LPAGE1 is transferred
back to the host. This avoids transferring extra data and also
ensures that data from physically adjacent LPAGEs is not
revealed, avoiding a possible security compromise.

VI. GARBAGE COLLECTION

Log structured stores require garbage collection to reclaim
storage space occupied by obsolete pages. In ELEOS, GC is
performed on a channel when the number of free EBLOCKs is
below a defined threshold. GC erases partially full EBLOCKs
so that these EBLOCK can be reused again. Before erasing
such an EBLOCK, we must move all still current LPAGEs
stored in this EBLOCK to new locations. Thus, it is critical to
select EBLOCKs to minimize this data movement cost. This
section discusses how GC is implemented in ELEOS.

A. EBLOCK Selection

Wisely selecting EBLOCKs to GC is critical to reduce
the overall GC cost, i.e., to minimize the amount of data
moved per EBLOCK erased. Some simple selection strategies
include selecting oldest EBLOCKs or selecting EBLOCKs
with most available space (largest AVAIL). LLAMA [10]
uses the first strategy by organizing the storage as a circular
buffer. However, this strategy is only optimal for uniformly
distributed page updates since the oldest EBLOCK has, on
average, received the most updates. The second strategy only
locally optimizes the immediate GC step, but often fails to
minimize the overall GC cost. Consider two EBLOCKs, E1
and E2, with similar available space. E1 contains hot data and
is updated more frequently than E2. To minimize the overall
GC cost, we should select E2 to GC first because its available
space would not increase as much as the available space in
E1.

To minimize the GC cost, ELEOS implements the
minimum-cost-decline strategy [5]. Its key idea is select
EBLOCKs that have the smallest expected decline in GC costs.
That is, we would expect the least gain by further delaying GC
of these EBLOCKs. To select EBLOCKs to GC, we compute
a score for each EBLOCK as 1−E

E2×age , where E is the fraction
of the available space in an EBLOCK, and age is defined as

the elapsed time since the EBLOCK’s timestamp. EBLOCKs
with smallest computed scores are selected to GC. Noted that
EBLOCKs for storing log records are GCed separately as
these EBLOCKs are erased via log truncation. EBLOCKs that
store truncated log records will always have “smallest scores”
because no data movement is needed.

B. Separating Cold from Hot

In practice, user writes are usually a mix of hot data with
cold data together. Since GC is performed at EBLOCK level,
it is important to separate hot data from cold data so that
data movement is minimized. We use a simple separation
strategy of grouping LPAGEs by their ages. User writes are
assumed to be hotter (these are new updates) and are stored
into EBLOCKs dedicated to user writes. GC writes, i.e., for
LPAGEs that are not updated recently, are stored into separate
EBLOCKS because they represent colder data.

To improve the effectiveness of cold-hot separation, we
further separate GC writes so that LPAGEs with similar update
frequencies are stored together. The basic idea is to use
multiple opened EBLOCKs. Each opened EBLOCK uses its
timestamp to approximate the creation timestamps of stored
LPAGEs. Thus, for each EBLOCK to be GC’d, we write all
of its valid LPAGEs into an opened EBLOCK with the closest
timestamp. This allows us to separate EBLOCKs based on
their age, which approximates their update frequency.

C. Moving Valid LPAGEs

Moving valid LPAGEs involves reading them into memory
and writing them to new locations. We reuse most of the
codepath for handling user writes (Section IV) to process GC
writes. A system action is formed for each EBLOCK being
GC’d. Once the system action is successfully committed, all
GC writes of valid pages in an old EBLOCK are durable and
can be erased. In what follows, we focus on some differences
in the handling of GC writes.

To GC an EBLOCK, we first determine which LPAGEs
are still valid. The EBLOCK’s metadata, i.e., in its last few
WBLOCKs, stores the LPID and type for each stored LPAGE.
For each LPAGE type, we check the latest physical address
in the mapping table via its LPID. An LPAGE is valid if it
is still stored in this EBLOCK, and hence must be read into
memory to be moved.

An EBLOCK may store multiple versions of an LPAGE
with multiple instances of its LPID in the metadata. Even
though these LPIDs will always point to the same physical
address, because the LPID will find the same value in the
mapping table, we should only move this LPAGE once. Hence
we exploit an important property of write provisioning, i.e.,
that for any two valid LPAGEs P1 and P2 in an EBLOCK,
if P2 is newer than P1, then P2’s address must be after P1’s
address. The update order of LPAGEs is thus determined by
their positions in the EBLOCK’s metadata, where more recent
LPAGEs have larger positions. Thus, if we process LPAGEs
from newest (largest physical address) to oldest, the physical
addresses of valid LPAGEs must be monotonically decreasing.

LPID1 LPID2 LPID1 LPID3

EBlock

LPAGE 1 LPAGE 2 LPAGE 1 LPAGE 3

oldest newest

Fig. 6: GC EBLOCK example

Otherwise, the metadata entry for an LPAGE must be invalid,
even though its mapping table physical address may still point
to this EBLOCK.

Consider the example in Fig. 6. The EBLOCK stores four
LPIDs. Each LPID points to the physical location where it
is stored in the EBLOCK, located via examination of the
mapping table entry. LPIDs are processed from newest to
oldest, namely LPID3, LPID1, LPID2, LPID1. Based on the
discussion above, the last LPID1 is invalid because its physical
address is found to be larger than its immediate predecessor,
and can be safely ignored.

A system action is formed to write all valid LPAGEs into
new locations, as we did for user writes (Section IV). Commit-
ting a GC system action modifies the mapping table to install
the new locations of moved LPAGEs. This is implemented as a
set of conditional updates, i.e., a new location is only installed
if the same LPAGE has not been updated by user writes that
occurred between the time GC examined LPAGEs for validity
and the time the GC system action changes are committed and
installed. Otherwise, the LPAGE relocation is aborted because
GC has moved a now invalid version of the LPAGE.

VII. HANDLING WRITE FAILURES

Writing a WBLOCK may fail. This may be due to limited
SSD writes or simply variations in SSD fabrication. This
is an example of a problem that host-based log structuring
implementations do not have to deal with, as they “leave it to
the SSD”. But our controller is part of the SSD, and as such,
it must deal with write failures.

When a write failure occurs, we abort the system action
(either GC or user) so that the caller can retry. However, when
a WBLOCK cannot be written, subsequent WBLOCKs of the
same EBLOCK cannot be written either. Thus, the EBLOCK
metadata can no longer be written to the storage media,
making the entire EBLOCK unusable, including LPAGEs
written to the EBLOCK prior to the write failure. To address
this problem, when a write fails, we must migrate the previous
committed LPAGEs in this EBLOCK to new locations.

The implementation of EBLOCK migration is very similar
to GC, which allows us to reuse most of the codepath of
GC to handle write failures. There are two main differences
that require care. First, when an EBLOCK is migrated, all
subsequent I/O commands writing to this EBLOCK must be
failed as well. Second, the EBLOCK to be migrated may have
some LPAGEs written by uncommitted system actions. If the
EBLOCK is migrated before those system actions commit,
the system actions may install the old addresses pointing to

the migrated EBLOCK upon commit. To address this, before
an EBLOCK is migrated, those uncommitted system actions
are aborted as well. Since write failures are very rare and
each EBLOCK usually contains a very small number of active
system actions (due to large write buffers), aborting system
actions due to write failures would have at most modest
impact. Because this approach is simple, there is almost no
impact on normal case overall performance of ELEOS.

VIII. DURABILITY

The committed system actions and user sessions must be
durable and continue across controller crashes. We use logging
and checkpointing techniques to ensure the durability of three
tables, i.e., the mapping table, the EBLOCK summary table,
and the session table, together with the metadata of opened
EBLOCKs because it is not yet durable in the EBLOCK.
LPAGEs do not need to be logged because a system action
is only committed after all LPAGE writes contained in it are
successfully completed. If a system action is not committed
before the system crashes, it is aborted during recovery.
In the remainder of this section, we describe the logging,
checkpointing, and recovery techniques used in ELEOS.

A. Logging

The log in ELEOS is implemented as a linked list, where
each log page, i.e., a WBLOCK, stores a pointer to the
successor log page. Writing a log page may fail. When this
happens, the successor log page is written to a different
location, which breaks the log chain because the previous
log page now points to an invalid location. To overcome
this difficulty, we provision the next three locations for the
successor log page. Pointers to these pages are stored as
forward pointers in the predecessor log page. During recovery,
we read from these three locations one by one until the first
valid log page is found. When a log page cannot be written to
any of these three locations, we currently shut down writing
to the SSD.

All writes in ELEOS, including user writes, GC writes,
and checkpointing writes, are handled using system actions.
They follow the same logging protocol by first producing log
records of LPIDs with new addresses before actually writing
WBLOCKs for both data LPAGEs and log LPAGEs. Once
the WBLOCKs for these LPAGEs are successfully durable,
a commit record is forced. Hence, ELEOS uses the same
protocol to recover all writes.

B. Checkpointing

ELEOS regularly performs fuzzy checkpointing to bound
the recovery time and truncate log records. In ELEOS, the log
truncation LSN is determined by the minimum of three factors,
(1) smallest LSN of active system actions, (2) smallest LSN of
the mapping table and the EBLOCK summary table, and (3)
smallest LSN of all open EBLOCKs. To truncate log records,
checkpointing flushes dirty pages of the mapping table and
the EBLOCK summary table and forcibly closes some open
EBLOCKs if they are opened for too long. Forcibly closing

open EBLOCKs is necessary because EBLOCKs for storing
GC writes may stay open for a very long time, as ELEOS
maintains multiple open EBLOCKs for GC to separate hot
data from cold data.

The checkpointing process is as follows. First, the log trun-
cation LSN is determined. Next, the dirty pages of the mapping
table and the EBLOCK summary table are flushed. The session
table is flushed in its entirety. Checkpointing flushes one
dirty WBLOCK at a time, enabling each WBLOCK to be
completely full. Each such WBLOCK write is logged so that
the location of these parts of the table can be found during
recovery. After all writes are completed, a new checkpoint
record is created and persisted to a “well-known” location.
Checkpointing does not itself truncate the log. Rather it only
updates the log truncation LSN. The EBLOCKs that store
earlier log records will be erased later by GC.

C. Recovery

During recovery, we restore the system tables and the
metadata of open EBLOCKs. The recovery log contains the
log records for user writes, GC writes, and checkpointing
writes. When an EBLOCK is closed, we write a log record
describing this to reduce the number of potentially open
EBLOCKs. If an EBLOCK is closed but without a “close”
log record, we examine it as if it were open.

The basic idea of recovery is the same as in database recov-
ery – first read the checkpoint to initialize the system state,
then replay the log records to bring the system up-to-date.
When replaying log records, we only need to redo updates
without any undo because only committed system actions
modify the state. Moreover, the EBLOCK states changed by
aborted system actions, e.g., provisioned WBLOCKs, are not
undone. Whatever such system actions wrote will be counted
in AVAIL as garbage and subject to GC.

Even though the basic idea of recovery is straightforward,
we encountered a number of technical issues, which are
discussed below.

1) Two-Pass Log Replay: Before redoing updates from the
log records, we need to locate the mapping table and the
EBLOCK summary table from the stored checkpoint informa-
tion. The basic problem we face is that (1) the checkpointed
state is mixed in with the recovery log and (2) the location of
the checkpoint state that can be reached from the checkpoint
record we write at the end of a checkpoint may point to physi-
cal addresses that have been moved by garbage collection. GC
is used to reclaim space in all EBLOCKs, including those with
checkpoint information. The moved checkpoint information
will not be reachable via the physical addresses that we saved
in the checkpoint record.

We illustrate this problem in Fig. 7. Initially, suppose a
mapping table page Page1 is stored in physical address Addr0.
A user system action UserAct1 executes that modifies Page1,
with the change tracked by a log record describing this. Later, a
GC system action GCAct1 executes and moves Page1 to a new
physical address Addr1. Finally, the system crashes after these
two system actions commit. During recovery, by checking the

timeline

Create
CCAct1

Create
UserAct1

Commit
UserAct1

Commit
GCAct1

Log2: Page1 →Addr1Log1: Modify Page1

Page1 →Addr0

System
Crash

Fig. 7: Example of moved system table pages by GC

timeline

Create
UserAct1

Create
GCAct1

Commit
GCAct1

Commit
UserAct1

Log2: LPID1→Addr2Log1: LPID1
Addr0→Addr1

LPID1→Addr0

System
Crash

Flush
LPID1

Fig. 8: Example system actions causing inaccurate AVAILs

checkpoint record, we assume Page1 is still stored in the old
address Addr0, which has already been erased.

To deal with this, we institute a two-pass replay of the log.
The first pass recovers only the physical addresses of mapping
table and EBLOCK summary table pages that are stored as
part of the checkpointed state. The second pass over the log
applies updates to the values stored in these tables as a result
of system execution since the start of the checkpoint (i.e., from
the log truncation LSN).

2) Mapping Table and AVAIL: To Recover the mapping
table, we redo all committed system actions. During normal
operation, updates made by user system actions are always
installed into the mapping table, while updates made by GC
system actions are installed only if the old address in the
mapping table matches the old address stored in the log record.
We use this same logic during recovery. Redo recovery of the
mapping table is idempotent because we have logged the after-
state of the operation. This guarantees we will always get the
latest version of the mapping table when recovery completes.

When committing a system action, we need to ensure that
the storage consumed by the old versions of updated LPIDs is
garbage collected. We do this by incrementing AVAIL of old
EBLOCKs, eventually leading to their garbage collection. We
need to do this as well during recovery, but the same mech-
anism does not work during recovery because the mapping
table may not contain the correct old address at the time that
recovery redoes an operation.

Consider the example in Fig. 8. LPID1 initially points to
Addr0 in the mapping table. Then, two user system actions,
namely UserAct1 and UserAct2, modify LPID1 with new
addresses Addr1 and Addr2 respectively. After their commit,
the mapping table page containing LPID is flushed, e.g., by
page eviction or checkpointing, followed by a system crash.
At recovery, redoing the update of UserAct1 will not identify
the correct prior old address, believing it to be Addr2, instead
of the correct old address, Addr0. The same problem arises
for GC system actions.

An inaccurate EBLOCK AVAIL may significantly impact
the GC efficiency after recovery since we choose EBLOCKs to

erase based to a substantial degree on the available space that
can be reclaimed. To maintain AVAIL across system crashes,
we need to log additional information. However, as mentioned
before, logging old addresses during the initialization phase is
difficult because uncommitted system actions may not have
applied their changes yet.

To minimize the error in AVAIL, each user and checkpoint
system action produces additional log records that contain
old addresses for LPIDs and lazily writes them. For GC
system actions, only aborted LPIDs are logged because old
addresses have already been logged. No additional mapping
table lookups are required because old addresses can be
obtained directly when installing new addresses. After all log
records are produced, a DONE record is logged signaling no
more log record will be produced for the system action.

During recovery, we use these additional log records,
whether accompanied by a DONE or not, to update EBLOCK
AVAIL. Should the system may crash before a DONE record
is written, some EBLOCK AVAILs may not be 100% accurate.
However, this reduces the potential error in AVAILs, which is
important as EBLOCK GC ordering is impacted by the value
of its AVAIL.

3) EBLOCK Summary Table & Metadata: Recall that each
EBLOCK stores its state, currently provisioned WBLOCKs,
available space AVAIL, and timestamp in the EBLOCK sum-
mary table. Each open EBLOCK also has metadata with
LPIDs and types for stored LPAGEs. Unlike the mapping
table, redoing updates on the EBLOCK summary table is
not idempotent because we do not log the entire value of
an EBLOCK state in each log record. To enable idempotent
recovery, we store the flush LSN for each EBLOCK summary
table page. A case analysis below describes how this works.

Case 1: A log record RECW writes to some physical
address in EBLOCK E. If E’s state is not open and the flush
LSN is no less than RECW ’s LSN, then RECW can be safely
ignored. Otherwise, we first add the LPID stored in RECW

into E’s metadata. We do not check the LSN because E’s LSN
only protects the EBLOCK summary table, not the metadata. If
RECW ’s LSN is greater than E’s flush LSN, we further update
the EBLOCK summary table by redoing the provisioning for
the new address stored in RECW . Recall that we use a single
thread to execute the initialization phase of system actions.
Thus, the addresses stored in the log records will be in the
same order as they are provisioned.

Case 2: A log record RECC closes an EBLOCK E. Again,
RECC is ignored if E is already closed and RECC’s LSN
is smaller than E’s flush LSN. Otherwise, we clear E’s in-
memory metadata and set E’s state to closed in the EBLOCK
summary table.

Case 3: A commit log record for a system action is
encountered. When a system action is committed, the storage
associated with the old addresses is added to AVAIL of the
relevant EBLOCK, as discussed in Section VIII-C2. For a
system action that is aborted, either because an abort log
record is encountered or because no commit log record is
encountered, it is the storage associated with the new addresses

that is added to AVAIL instead. Note that this process is
protected by LSNs, i.e., this is only redone if the log record’s
LSN is larger than an EBLOCK’s flush LSN.

Unfortunately, even after all log records are replayed, we
cannot guarantee the EBLOCK summary table is up-to-date
because the system may crash before log records for a sys-
tem action are persisted but some WBLOCKs have already
been written. In this case, writing to non-empty WBLOCKs
would cause a write failure. We alleviate this problem in
two ways without sacrificing write performance. First, for all
open EBLOCKs after recovery, we fix the current WBLOCK
position by reading forward until we encounter the first empty
WBLOCK. The storage size of the non-empty WBLOCKs is
added to AVAIL as if they were written by aborted system
actions. However, it is still possible that some EBLOCK
is opened by aborted system actions but no log record is
persisted. Performing a full scan over all EBLOCKs is too
expensive. We expect these EBLOCKs are very rare because
each channel only maintains a few open EBLOCKS at all
times. Moreover, writing log records is much faster than
writing LPAGEs because each system action only produces a
small amount of log records compared to its LPAGEs. Thus,
we simply choose to tolerate write failures caused by writing
to non-empty WBLOCKs as described in Section VII.

IX. EVALUATION

In the evaluation we are primarily interested in compar-
ing the impact of our new batch I/O storage interface with
the existing block I/O interface, and showing the benefit of
supporting variable size pages compared to fixed size pages.
We thus focus our experimental study on a single-threaded
experiments in order to isolate the performance impact of the
storage interface.

A. Configuration

1) Hardware: We performed our evaluation on an Ubuntu
16.04.6 LTS host machine with an Intel Xeon E5-1620 3.5GHz
processor with 32GB of DRAM. Our programmable SSD is
built based on a standalone platform, named STT100, man-
ufactured by Broadcom for developing storage applications.
The platform uses BCM5880X SoC equipped with an ARM
Cortex-A72 1.8GHz processor and runs Ubuntu 16.04.6 LTS
as a working OS. For issuing read, write, and erase operations
against raw flash memory, we used a CNEX Open-Channel
SSD attached to the STT100 via PCIe Gen3x8. Data transfer
between the host and the programmable SSD is performed
via stream sockets with the NVMe-oF/TCP protocol. We
configured the network speed between the host and the pro-
grammable SSD to be 100Gbps, which guarantees that the
network is not a performance bottleneck in all experiments.

2) Software: On the programmable SSD, we ran OX [1],
a software framework for programming a storage controller.
The framework provides a full-fledged, generic FTL to enable
reads and writes via a standard block-based interface. On top
of the framework, we implemented ELEOS, a customized FTL
to support batched writes of variable size pages of an arbitrary

number of bytes. This new implementation relies on in-SSD
log structuring with the following new APIs: (1) readLPID for
reading a variable size page with its LPID, which differs from
the standard block read (used in OX-Block) that requires a
starting address of the page, (2) flushbatch for flushing a batch
of variable size pages entirely. Compared with the standard
write of an array of bytes, ELEOS identifies the pages by
parsing the batch using metadata within the batch.

3) Benchmarks: We used the following two sets of bench-
marks. First, we ran an I/O trace collected from running the
TPC-C benchmark with the scale factor 1000 on the B+-tree
storage engine of Apache AsterixDB [17]. The page size was
set at 4KB. We enabled page compression of the B+-tree
so that the produced I/O trace contains variable size pages.
The average size of compressed pages was 1.91KB. The I/O
trace was collected during the running phase of the TPC-C
benchmark, after the base tables are loaded. Finally, we used
the first 100GB pf page writes in our evaluation.

Second, we ran a key-value store based on Bw-tree [9] with
a set of YCSB workloads [2] that is widely used for evaluating
performance of NoSQL stores. It should be noted that the
original Bw-tree avoids updating base pages directly by main-
taining a delta chain that stores modifications to a node. When
the chain becomes too long, a compaction operation is needed
to consolidate delta records into the base page. Therefore, we
modified the original Bw-tree to simply perform updates in-
place without creating delta chains. In addition, with ELEOS
the Bw-tree no longer need (1) remember where LPAGEs
are located on the SSD (i.e., checkpointing and recovering
its mapping table are not needed because cached LPAGES are
only mapped to their main memory locations) and (2) perform
garbage collection that is now done by the SSD controller,
which is aware of LPAGE physical locations..

Our YCSB workload is write-heavy, containing 5% reads
and 95% updates2. ELEOS batching currently works only on
the write path to the SSD. Keys for read and update operations
are selected randomly from the set of existing keys in the index
according to a Zipfian distribution. Our YCSB dataset has 10
million unique records, each consisting of an 8-byte key, and
a 100-byte payload. For each run of benchmarks we fully re-
initialized an index with records in the dataset, and then ran
the specified workload for 300 seconds. We report the total
number of operations completed in that time, where operations
are either reads or updates. The read and update operations
are interleaved. Specifically, we performed 19 updates, then
1 read, then repeated the cycle. We varied the buffer cache
size of the Bw-tree over a range measured as a percentage
of the dataset size to evaluate its throughput while shifting
the workload from mostly in-memory to mostly on SSD. The
maximum Bw-tree page size was set to 4KB, and the write
buffer size used in the Bw-tree flush operation was set to 1MB.

2We also evaluated a read-heavy workload with 95% reads and 5% updates,
but omit the results due to space constraints.

W
ri

te
 T

h
ro

u
g
h
p

u
t

(p
ag

es
 w

ri
tt

en
 t

o
 S

S
D

 /
 s

ec
)

Write Buffer Size

0

10000

20000

30000

40000

50000

60000

4KB 16KB 64KB 256KB 1MB

Block Batch (FP) Batch (VP)

Fig. 9: TPC-C write throughput, varying the write buffer
size for the batch interface. FP and VP denote fixed- and
variable size pages, respectively.

Block Batch (FP) Batch (VP)

Write Throughput (pages/sec) 52.73K 255.03K 447.79K
Write Bandwidth (MB/sec) 206.17 1015.86 992.39

TABLE II: TPC-C write throughput with a programmable
SSD simulator using a high-end CPU. Note that the write
buffer size for the batch interface was set to 1MB.

B. B+-tree with TPC-C

To evaluate the impact of variable size page support over
a batch interface, we carried out experiments of replaying the
TPC-C trace to measure the write throughput (i.e., the number
of TPC-C pages written to the SSD per second). The results
with different batch sizes are shown in Fig. 9. As one can
see, it is clear that batching writes is effective (over a block-
oriented approach), and its impact is greater as the larger batch
size is used. It was also observed that by removing internal
page fragmentation, the batched write interface of variable size
pages provided approximately twice the write throughput of
the batch interface with fixed-size pages.

In this experiment, interestingly, the programmable SSD
easily became a performance bottleneck, mainly due to the
relatively weak storage controller3. For example, as mentioned
in Section IX-A3 a commercial SSD’s FTL runs in firmware
on a custom ASIC while our FTL of the programmable
SSD runs on a storage controller running Linux as well. In
addition, the programmable SSD uses a standard network
protocol (i.e., TCP/IP) for NVMe over fabric as a flexible
solution for the communication protocol. Unfortunately, the
socket connection delivers fast network performance at the
cost of moving data on the network stack with a high CPU
utilization (e.g., more than 60% of CPU loads were used
for the socket communication for some experiments). Such
high utilization might not be ideal for storage devices where
relatively fewer and weaker cores exist compared to high-
performance servers4.

3In all cases, the I/O bandwidth was about 85MB/sec, and the host CPU
utilization was less than 15%.

4Exploring other advanced protocols such as Remote Direct Memory
Access (RDMA) to reduce the network overhead is a topic for future work.

To show the full potential of a batch interface (avoiding
being I/O bound), the same experiment was carried out using
a remote server where a programmable SSD simulator runs
with a high-end CPU. As can be seen in Table II, the batch
interface showed about 8.5 times higher write throughput than
the block interface when the performance bottleneck moved
from storage to CPU. In addition, given that the average
size of the TPC-C variable size pages was slightly less than
2KB, about half of the write bandwidth of the batch interface
supporting only fixed-size pages was wasted writing unused
space within the page.

C. Bw-tree with YCSB

1) Normal State: In this experiment, we evaluated the
overall throughput of the Bw-tree in a non-durable setup where
both checkpointing and garbage collection are disabled. The
results with different cache sizes are shown in Fig. 10(a). In
all cases, as expected, the overall throughput decreases when
the buffer cache size becomes smaller because of more cache
misses, resulting in the increased number of I/Os issued to
the SSD. We can see clearly that the variable size imple-
mentation does not degrade the performance compared to the
one achieved when only dealing with fixed-size pages. This
is notable as flash page alignment is lost when supporting
variable size pages. At the same time, the variable size page
implementation reduces by about 30% the total amount of data
written by packing variable size pages without internal page
storage fragmentation as shown in Fig. 10(b).

Under the same hardware configuration, we could observe
even clearer benefits of batching writes over a block-at-a-time
interface. As shown in Fig. 10(a), Batch outperformed Block
by 1.12 – 1.97×, depending on the configured cache size.
The main reason for this behavior is due to the different write
granularities supported by each configuration. Unlike the read
path of the Bw-tree where a single page is read at a time, in
the write path a 1MB-sized write buffer is flushed to the SSD
during the benchmarks. Once the flush starts, the 1MB data
is first split into 17 packets5 according to the NVMe-oF/TCP
protocol, and then the packets are sent to the SSD.

On the SSD side, Batch waits until all 17 packets are
received, and then creates a single write context to guarantee
the atomicity of the whole 1MB data. In contrast, Block does
not know any logical relationship among the 17 packets, so a
write context needs to be created per each packet, resulting in
17 contexts for the 1MB data. This means that Block has to
process about 17× more internal writes than ELEOS, resulting
in much more commit log records that need to be generated
and flushed before completing the 1MB write request. In
addition, the small write granularity of OX prevents fully
exploiting the internal SSD parallelism - the maximum size
of an internal write of Block is bounded by the packet size,
which is not big enough to leverage all flash channels at once.

5Note that the maximum size of an IP datagram, a basic transfer unit
associated with a packet-switched network is 65,532 bytes including a 20
bytes header followed by a data area.

0

50000

100000

150000

200000

250000

300000

Cache Size

(10%)

Cache Size

(50%)

Cache Size

(90%)

Block

Batch (FP)

Batch (VP)

0
10
20
30
40
50
60
70
80

Cache Size

(10%)

Cache Size

(50%)

Cache Size

(90%)

Batch (FP)

Batch (VP)

0

25000

50000

75000

100000

125000

150000

Block Batch (FP) Batch (VP)

Without GC

With GC

(a) (b) (c)

S
iz

e
o

f
d

at
a

w
ri

tt
en

 t
o

 S
S

D
 (

G
B

)

T
h
ro

u
g
h
p

u
t

(o
p

er
at

io
n
s/

se
c)

T
h
ro

u
g
h
p

u
t

(o
p

er
at

io
n
s/

se
c)

Fig. 10: (a) Bw-tree throughput with a 1MB write buffer, varying the cache size. (b) The total amount of data written
to the SSD during benchmarks. (c) Bw-tree throughput when enabling garbage collection when the cache size is set to
10% of the dataset size.

2) Garbage Collection: We then explored how garbage
collection (GC) affects the overall performance. To facilitate
the GC process, the SSD capacity was limited to 10 times
larger than the dataset size with an over-provisioning of
30% to avoid the situation where all channels are full. This
over-provisioning space, designated as “free space”, assists in
efficient delivery of free blocks during GC, helping to increase
the lifetime, endurance, and overall performance of the SSD.
GC is triggered when the number of used blocks in the SSD
reaches to a certain threshold. In this experiment, the GC
process described in Section VI is conducted by the SSD
controller when the SSD space is 90% full.

On the other hand, when running with a conventional block-
oriented interface, the Bw-tree requires an additional host-
based GC process that continuously reclaims space occupied
by stale data to ensure contiguous free areas for appending
buffers with new versions of pages. Since versions of pages
have different lifetimes, very old parts of the log could contain
still current pages. To reuse this old section of the log, the still
current pages need to be moved to the active tail of the log,
appending them there so that the old part can be recycled for
subsequent use. In other words, the oldest part (head of the
log) is “cleaned” and added as new space at the active tail of
the log where new page state is written. Note that Batch does
not require this host-based GC as mentioned in Section IX-A3

The results when the 10% cache size (small enough to ag-
gressively require writes to the SSD) are shown in Fig. 10(c).
As expected, compared with the case where GC is completely
disabled we observed performance degradation because a
fraction of CPU and I/O resources used to be dedicated
for handling the benchmark operations needs to be used for
performing GC periodically. However, as can be seen in the
figure, Batch performed GC much more efficiently than when
using the SSD with a block-oriented interface. For example,
with variable size pages, the overall throughput of the Bw-tree
declined by about 5.2% while performance of Block declined
by about 42.3%. Batch exactly knows which flash-resident data
is garbage, so during GC Batch needs only to move valid data.
However, the Bw-tree with Block lacks such information, and
therefore needs to read whole LS segments, and then parse
them them to figure out which data is valid, resulting in a
significant increase in the read amplification of its GC process.

X. CONCLUSION

In this paper, we have described the implementation of
ELEOS, a customized SSD controller supporting batched
writes of variable size pages. This work is an example of
exploiting the new opportunities as to where functionality is
implemented and how it can simplify systems in the new world
of open hardware architectures.

ELEOS eliminates the log structuring overhead from the
host to improve the performance of host applications. In
particular, the host burden of recovery and garbage collection
for a log structured store is entirely removed. Moreover,
ELEOS’s native support for variable size pages improves I/O
performance by eliminating internal page fragmentation, hence
reducing the amount of data written.

REFERENCES

[1] OX: Computational storage SSD controller. https://github.com/
DFC-OpenSource/ox-ctrl, 2019.

[2] B. F. Cooper et al. Benchmarking cloud serving systems with YCSB.
In SoCC, pp. 143–154, 2010.

[3] B. Gu et al. Biscuit: A framework for near-data processing of big data
workloads. In ISCA, pp. 153–165, 2016.

[4] D. Lomet. Cost/performance in modern data stores: How data caching
systems succeed. In DaMoN, pp. 1–10, 2018.

[5] D. Lomet et al. Efficiently reclaiming space in a log structured store.
arXiv:2005.00044, 2020.

[6] J. Do et al. Query processing on smart SSDs: opportunities and
challenges. In ACM SIGMOD, pp. 1221–1230, 2013.

[7] J. Do et al. Programmable solid-state storage in future cloud datacenters.
CACM, 62(6):54–62, 2019.

[8] J. Do et al. Improving CPU I/O performance via SSD controller FTL
support for batched writes. In DaMoN, pp. 1–8, 2019.

[9] J. Levandoski et al. The Bw-tree: A B-tree for new hardware platforms.
In ICDE, pp. 302–313, 2013.

[10] J. Levandoski et al. LLAMA: A cache/storage subsystem for modern
hardware. PVLDB. 6(10):877–888, 2013.

[11] M. Rosenblum et al. The design and implementation of a log-structured
file system. ACM TOCS, 10(1):26–52, 1992.

[12] M. Cornwell. Anatomy of a solid-state drive. ACM Queue, 10(10),
2012.

[13] M. Bjørling et al. Lightnvm: The linux open-channel SSD subsystem.
In FAST, pp. 359–374, 2017.

[14] P. Wang et al. An efficient design and implementation of LSM-tree based
key-value store on open-channel SSD. In EuroSys, pp. 16:1–16:14, 2014.

[15] S. Seshadri et al. Willow: A user-programmable SSD. In OSDI, pp.
67–80, 2014.

[16] T. Haerder et al. Principles of transaction-oriented database recovery.
ACM computing surveys (CSUR), 15(4):287–317, 1983.

[17] S. Altwaijry et al. AsterixDB: A scalable, open source BDMS. PVLDB,
7(14):1905–1916, 2014.

https://github.com/DFC-OpenSource/ox-ctrl
https://github.com/DFC-OpenSource/ox-ctrl

	Introduction
	Improving Cost/Performance
	Variable Size Pages
	This Paper and Our Contributions

	Background
	Log Structuring
	Solid State Drives (SSDs)

	System Architecture
	I/O Interface Semantics
	Write Buffer Semantics
	Ordering Among Multiple Write Buffers

	FTL Components

	Write Path
	Initialization Phase
	Write Provisioning
	I/O Command Generation
	Logging

	Execution Phase
	Commit Phase

	Read Path
	Garbage Collection
	EBLOCK Selection
	Separating Cold from Hot
	Moving Valid LPAGEs

	Handling Write Failures
	Durability
	Logging
	Checkpointing
	Recovery
	Two-Pass Log Replay
	Mapping Table and AVAIL
	EBLOCK Summary Table & Metadata

	Evaluation
	Configuration
	Hardware
	Software
	Benchmarks

	B+-tree with TPC-C
	Bw-tree with YCSB
	Normal State
	Garbage Collection

	Conclusion
	References

